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Introduction. Given an unoriented graph (or 1-dimensional regular complex),
let X be the set of all its vertices and U be the set of all its edges. When the graph
is finite, the following problems arise:

Problem 1: A set A c X is said to be internally stable if x e A, y e A implies
(x, y) o U. The symbol A will denote the number of elements of A. Construct
an internally stable set A such that A is maximum.

Problem 2: A set B c X is said to be a cover if every edge of U is adjacent to
at least one vertex in B. Construct a cover with the minimum number of elements.

Problem 3: A set of edges V c U is said to be a matching if two edges of V have
no vertex in common. Construct a matching with the maximum number of
elements.
A particular case of Problem 1 is the chess problem of Gauss: Put eight queens

on the board such that no one can take any other. In n-person game theory, if
the graph of domination is symmetrical, a maximum internally stable set turns
out to be a maximum solution (in the von Neumann-Morgenstern sense1), and the
more usual case can be solved by means of the Grundy functions.2
Problem 2 is the set theoretic dual of Problem 1, since the complement of an

internally stable set is a cover, and conversely. Particular cases of Problem 3 are
the problem of distinct representatives (P. Hall1) and the problem of Petersen
(D. K6nig4). In the case where the graph is bipartite, Problem 3 has been solved
by algebraic methods by 0. Ore,5 and an efficient algorithm has been given by H.
Kuhn.6 Unfortunately, the linear programming duality used by H. Kuhn no
longer subsists when the graph is not bipartite. (Note that Problem 2 is the
linear program dual to Problem 3 in the bipartite case.) In view of solving the
general case, this paper states two theorems: Theorem 1 gives a necessary and
sufficient condition for recognizing whether a matching is maximum and provides
an algorithm for Problem 3, while Theorem 2 yields an algorithm for Problems
1 and 2.

The Theorems.-Consider a graph G = (X, U) with a matching V0; if u e Vo
we shall say that edge u is strong, otherwise that u is weak. An alternating chain
is a chain which does not use the same edge twice and is such that for any two
adjacent edges one is strong and the other is weak. A vertex x which is not ad-
jacent to a strong edge is said to be neutral, the set of all neutral points being N.
We shall also consider a graph G constructed from G by adding a vertex a and

connecting a to every neutral point with a strong edge. If there exists an alternat-
ing chain from a to a vertex x, we shall picture an arrow on the last edge (z, x),
directed from z to x. A vertex x (a N) which is not adjacent to a directed edge is
said to be inaccessible, the set of all inaccessible points being I. A vertex x (t N)
adjacent to a weak edge directed to x and not to a strong edge directed to x is said
to be weak, the set of all weak points being W. A vertex x (f N) adjacent to a
strong edge directed to x and not to a weak edge directed to x is said to be strong,
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the set of all strong points being S. A vertex x (f N) adjacent to a strong edge
directed to x and to a weak edge directed to x is said to be medium, and the set of
all medium points will be designated by M.
LEMMA 1. Let Y be a connected component of the subgraph M; if a is inaccessible,

there exists in G one strong edge adjacent to Y and directed to Y only; all other edges
adjacent to Y are weak and directed from Y only. Moreover, all vertices not in Y and
connected to Y by one edge are weak, and YI > 3.

This is a theorem of T. Gallai;7 a shorter proof is given by Berge.8
LEMMA 2. If a is inaccessible, S u N is internally stable.
(Immediate.)
LEMMA 3. If a is inaccessible, AI =M and I = X, then S u N is a maximum

internally stable set, W is a minimum cover, and Vo is a maximum matching.
From Lemma 2, S u N is internally stable, hence W = X - (S u N) is a cover.

For every cover C and for every matching V, one has Cl > VV; as W o=V
the cover W is minimum and the matching V0 is maximum.
LEMMA 4. Let Z be a connected component of the subgraph I; if a is inaccessible,

all edges adjacent to Z are weak and undirected; moreover, all vertices not in Z con-
nected to Z by an edge are weak, and ZI > 2.

(Immediate.)
LEMMA 5. If NI < 1, Vo is a maximum matching.
This follows from the fact that X = 21 V0 + N .

LEMMA 6. If A c X, let GA be the graph constructed from G by shrinking A into
a single vertex aA, having as adjacent edges the adjacent edges of A. If the original
strong edges constitute a maximum matching for the subgraph A, and for GA, then Vo
is a maximum matching for G.

This is easy to see by an induction on the number of elements of A.
THEOREM 1. A matching V is maximum if and only if there does not exist an

alternating chain connecting a neutral point to another neutral point.
If there existed an alternating chain W = (ul, U2..., uk) connecting a neutral

point a to a neutral point a' different from a, (V - W) u (W - V) would be a
matching with more elements than V, and V would not be maximum.

Conversely, let us prove that, if such a chain does not exist, V is maximum; the
proposition being obvious when the graph has one or two edges, we shall assume
that the proposition is true for any graph having fewer than m edges, and we shall
prove it for a graph G of m edges. One can assume that G is connected.
From Lemma 5, one can assume NI > 1; from Lemma 3, one can also assume

that either M 5s 0 or I $ 0.
1. If M # X, let Y be a connected component of the subgraph Al; the graph

GY constructed from G by shrinkage satisfies the conditions of the theorem (Lemma
1); as it has at least one edge less than G, the strong edges constitute a maximum
matching for Gy. On the other hand, the subgraph Y has only one neutral point
(Lemma 1) and therefore its strong edges constitute a maximum matching. Thus,
from Lemma 6, V0 is a maximum matching for G.

2. If I $ 0, let Z be a connected component of subgraph I, and consider the
graph G?. The vertex az is a neutral point, connected only with weak points.
No alternating chain leads from a point of N to az. As Gz satisfies the conditions
of the theorem, Gz admits its strong edges as a maximum matching. On the
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other hand, the subgraph Z, having no neutral points, admits its strong edges as a
maximum matching; therefore, Vo is a maximum matching for G.
THEOREM 2. Let Cy (resp. Cz) be any minimum cover for the subgraph generated

by a connected component Y of M (resp. Z of I). If there does not exist an alter-
nating chain connecting a neutral point to another neutral point, the set

C = W u UCy u UCz
Y z

is a minimum cover for G.9
Every vertex which is connected by an edge to a component Y is a weak point

(Lemma 1); every vertex which is connected by an edge to a component Z is a
weak point (Lemma 4). Therefore C is a cover for G. As C is a minimum cover
for the graph G' deduced from G by removing all edges connecting a weak vertex
to a medium or inaccessible vertex (Lemma 3), C is also a minimum cover for G.
Theorem 1 suggests the following procedure for solving Problem 3; Construct a

maximal matching V, and determine whether there exists an alternating chain W
connecting two neutral points. (The procedure is known.) If such a chain exists,
change V into (V - W) u (W - V), and look again for a new alternating chain;
if such a chain does not exist, V is maximum.
Theorem 2 gives an algorithm for Problem 2, hence for Problem 1.
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